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We use exact enumeration and series analysis methods to study how restricting the degree of branching of
lattice trees and animals affects their growth constants. In addition to trees with only nearest neighbor steps, we
enumerate trees involving next nearest neighbor steps on the triangular and square lattices, allowing us to study
the influence of lattice coordination number on the growth constant. We also study the asymptotics of the
number of subtrees of the Bethe lattice with the same branching restrictions as above and compare the results
with those for lattice trees.@S1063-651X~96!10505-5#

PACS number~s!: 05.50.1q

I. INTRODUCTION

The configurational properties of linear polymers in dilute
solution in a good solvent are now well understood@1#. Self-
avoiding walks are a simple model of linear polymers and
have been important in developing our current level of un-
derstanding@2#. Branched polymers are less well understood
although there is considerable recent work in this area@3–6#.
Experimentally branched polymers can be formed when a
large number of polyfunctional monomers react@3#. There
are two important lattice models for studying branched poly-
mers. These are lattice trees and lattice animals. Each of
these is a connected cluster of vertices of a lattice, but with
different technical restrictions. A lattice animal can have
cycles, so that an edge can be deleted without disconnecting
the animal, while a lattice tree has no cycles so that every
edge is a cut edge. This means that upon deleting any edge
the tree becomes disconnected. There are at least two ver-
sions of each of these models. A tree isstrongly embeddable
if every pair of vertices in the tree that are a unit distance
apart in the lattice have an edge of the tree joining them.
That is, a strongly embeddable tree is a connected section
graph of the lattice, having no cycles. If two vertices, a unit
distance apart, are not necessarily joined by an edge then the
tree isweakly embeddable. That is, a weakly embeddable
tree is a connected subgraph of the lattice, having no cycles.
Strongly and weakly embeddable animals are defined in a
similar way.

Lattice trees also appear in a related problem,planar
vesicles, discussed in more detail in@7#. Planar vesicles are
closed self-avoiding walks or polygons embedded in a two-
dimensional plane and subject to a pressure differential be-
tween the interior and the exterior. When the external pres-
sure is much larger than the interior one, and the rigidity of
the vesicle is small, the system is found to exhibittreelike
configurations, i.e., the object dual to the planar vesicle has
few large cycles.

From the point of view of critical phenomena, problems
with fixed topology~i.e., fixed homeomorphism type!, such
as self-avoiding walks, stars, combs, etc.@8,9#, are relatively
well understood. In particular, for a given fixed topologyt
the asymptotic behavior of the number of embeddings, with

N vertices or bonds, is conjectured to be

CN~t!;mNNg~t!21, ~1!

wherem is independent of the topology under a wide range
of conditions@9# and scaling theory arguments suggest that
the exponentg(t) may be written in terms of the exponents
for f stars@8#.

Lattice trees are perhaps the simplest model for which the
exponential rate of growth of the number of embeddings is
larger than for self-avoiding walks. The number of rooted
trees~i.e., with one vertex labeled and called the root!, tN ,
with N vertices is thought to increase as

tN5A0l0
NN12u~11B0N

2D1••• !, ~2!

with l0.m. As N increases more topologies~homeomor-
phism types! can occur and this is responsible for the in-
creased exponential growth rate. However, the relationship
between the value of the growth constant (l0) and the rate at
which new topologies appear is not well understood. The
work reported here is an empirical study of this problem in
which the rate of appearance of new topologies is limited by
restrictions placed on the branch vertices. In this sense, the
present work is complementary to the work in@7#, where the
appearance of topologies is controlled by a fugacity.

Renormalization group arguments suggest that lattice
trees and animals are in the same universality class@10,11#.
Thus, for animals and trees, the numberaN of rooted clusters
with N elements is expected to behave asymptotically as

aN5AlNN12u~11BN2D1••• !. ~3!

This generalizes Eq.~2!. l is the growth constant,u is the
scaling exponent, andD the correction-to-scaling exponent.
The growth constant is dependent on the lattice, and also on
the restrictions imposed on the degree of branching of a ver-
tex. In additionl is different for trees and animals@12#,
different for strong and weak embeddings@13#, and, in the
case of animals, depends on whether the animal is counted
by vertices or bonds@14#. However, the exponentu is be-
lieved to be universal@15# and equal to 1 in two dimensions
and to 3/2 in three dimensions.
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In a reaction to synthesize branched polymers, the mono-
mers have a maximum value for their functionality, so that
no monomer can be directly connected to more than sayv
other monomers. Similarly, steric hindrance can effectively
limit the maximum number of monomers to which a given
monomer can be directly connected@3,16#. These effects can
be modeled by imposing a restriction on the maximum va-
lence of a vertex of a tree or animal. Here, the valence (v)
~or functionality or degree of branching of a vertex! is the
number of bonds incident on a vertex. One can investigate
both the effect of changing this maximum valence and also
changing the lattice coordination number. In this work, our
primary aim is to study the detailed effects of valence restric-
tions and lattice coordination numberz on growth constants
for trees on lattices including Bethe lattices. As pointed out
in @17#, the dependence of growth constants on the lattice
coordination number is of fundamental interest in trying to
understand the relationship between geometrical structure
and critical phenomena. In addition, polymers containing
vertices of high functionality can be synthesized and are of
considerable interest. In this context, stars on lattices with
high coordination number have previously been studied@18#.

We consider bond trees~i.e., weak embeddings! on square
~sq!, triangular ~tr!, simple cubic~sc!, body-centered cubic
~bcc!, and face-centered cubic~fcc! lattices. In order to ob-
tain larger coordination numbers in two dimensions, we gen-
erate series of trees that include next nearest neighbor~nnn!
steps on sq and tr lattices@17#, and from now on these series
will be denoted sqnnn and trnnn. For the sq lattice this
amounts to increasingz from 4 to 8, and, for the tr lattice, the
increase is from 6 to 12. In addition to the above, we also
study existing series for strongly embeddable animals on the
triangular @19#, simple cubic@20#, and body-centered cubic
@21# lattices.

The rest of the paper is organized as follows: In the next
section, we discuss rooted lattice trees in two and three di-
mensions under various branching restrictions, and estimate
l in each case by means of standard methods of series analy-
sis. In addition to studying the original series@see Eq.~4!
below# in each case, we also perform aa ratio of coefficients
analysis with some interesting consequences. In Sec. III, the
asymptotic analysis of trees on Bethe lattices is discussed.
Finally, in Sec. IV, we present an overall discussion and a
summary of our results.

II. LATTICE TREES WITH RESTRICTED BRANCHING

Consider the generating function of the rooted tree series

G~x!5 (
n>1

r n~v !xn, ~4!

where we have suppressed thez dependence. In this equa-
tion, r n(v) is the number of trees withn vertices, andv
refers to the restriction imposed on the valence of the branch
points. In our work, we impose only the following restric-
tions on the valence (v) of the branch points:v53, v54,
v55, v56, v<4, v<5, andv<6 for all lattices including
those withz.6. The reason, as will be demonstrated later, is
that the growth constant does not change noticeably when

the restriction is relaxed fromv<5 to v<6, and so allowing
branchings withv.6 is not likely to change our conclusions
noticeably.

We have enumerated rooted trees on the sq, tr, sc, bcc,
and fcc lattices using the Martin algorithm@22#. Note that on
the triangular lattice, in addition to trees involving the usual
nearest neighbor steps, we have enumerated trees that in-
clude next nearest neighbor~nnn! steps. In the case of the sq
lattice, only the nnn case was considered, since in the nearest
neighbor casez5vmax54 and the number of possible va-
lence restrictions is too small to provide a meaningful com-
parison. In most cases, the number of terms in the series was
less than 15, owing to computational limitations. The series
corresponding to the larger coordination numbers were espe-
cially short: in fact, for fcc and trnnn withz512, we were
able to obtain only 11 terms. Copies of the series coefficients
are available from the authors upon request. As mentioned
earlier, the animal series used in this work were taken from
published sources@19–21#.

The series were studied using standard methods of analy-
sis including Neville table extrapolation, D-Log Pade´ ap-
proximation, and the Baker-Hunter method@23#. In addition
to the abovedirect analysis, we have also used a method
based on the ratios of coefficients of each restricted series
and an appropriate reference series. For a given lattice, the
series withv<6 has been used as the reference series in each
case. To demonstrate the advantages of this approach, con-
sider the generating function of the series of ratios of coef-
ficients, namely,

g~x!5 (
n>1

r n
r n~v !

xn. ~5!

Here r n[r n(v<6) is the nth coefficient of the reference
series, andr n(v) is thenth coefficient of one of the restricted
series using the same lattice. Substitution of Eq.~3! imme-
diately yields~to lowest order!

g~x!; (
n50

S lx

l~v ! D
n

'S 12
lx

l~v ! D
21

, ~6!

where the dependence onu has canceled out.l(v) andl are
the restricted and reference growth constants, respectively.
The critical point ofg(x) is located atxc5l(v)/l. Because
of the simple pole structure,g(x) is amenable to a straight-
forward Pade´ analysis, in addition to all of the methods cited
above.

The results of thedirect analysis of the series are shown
in Tables I and II. The values shown are overall estimates
consistent with the Parisi-Sourlas@15# predictions foru in
two and three dimensions. While the shortness of the series
does not seem to affect the accuracy of our results for
v<6, 5, 4, and 3~shown in Table I!, this is not the case for
v54, 5, and 6~Table II!. For the latter group, the number of
trees for a given number of verticesr n(v) is relatively small.
Now, it is important to note thatr n(v) includes the number
of walks as well as the number of trees. Since the asymptotic
behavior of the number of walks is quite different from that
of trees~in that bothl andu are different!, it is not surpris-
ing that in these cases our analysis is not very accurate. That
is, the self-avoiding walk contribution to these low order
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terms is still large, and new topologies appear relatively
slowly because of the restrictions; we therefore expect the
analysis to be affected by crossover effects. In particular, the
Baker-Hunter method was not successful in the analysis of
v55 and trees, and the values quoted in Table II are largely
based on Neville table extrapolation and D-Log Pade´ meth-
ods. It is also worth noting that, in almost all cases, working
with the first and second moments of the series rather than
the zeroth moment was found to improve considerably the
precision of the results of the D-Log Pade´ and the Baker-
Hunter analyses.

It is seen from Tables I and II that in all casesl seems
~almost! to saturate once the least restrictive branching,
v<6, is reached. In fact, the values ofl for v<5 and

v<6 are not distinguishable, given the limited length of the
series used in the analysis. It is then reasonable to suppose
that relaxing the branching restriction any further, say to
v<7, even on a lattice withz512, is unlikely to produce any
increase inl detectable by series analysis. However, pattern
theorem arguments similar to those used in@13# show rigor-
ously thatl(v<z).l(v<z21). For a given valence re-
striction, a plot of l against z approximately follows a
straight line with only slight scatter in both two and three
dimensions.

The results from the ratio of coefficients analysis are
shown in Tables III and IV. Note that the ratios
q(v)5l/l(v), where l5l(v<6), depend much more
strongly on the valence restrictions than on the lattice. In-

TABLE I. Estimates of the growth constantl for lattice trees
and animals forv<6, 5, 4, andv<3.

z v<6 v<5 v<4 v<3

Trees
fcc 12 23.585 23.575 23.4 21.5

60.020 60.010 60.2 60.8
bcc 8 15.17 15.160 15.10 13.7

60.01 60.006 60.05 60.4
sc 6 10.549 10.550 10.504 9.95

60.002 60.002 60.005 60.05
trnnn 12 21.19 21.166 21.00 19.735

60.02 60.020 60.03 60.011
sqnnn 8 12.4290 12.4246 12.3655 11.737

60.0006 60.008 60.0006 60.007
tr 6 8.396 8.396 8.374 8.06

60.007 60.007 60.004 60.05

Animals
bcc 8 11.161 11.142 10.9685 10.5

60.007 60.007 60.0015 60.1
sc 6 8.343 8.340 8.265 7.8

60.001 60.007 60.010 60.5
tr 6 5.183 5.181 5.1 4.7

60.001 60.003 60.3 60.2

TABLE II. Estimates of the growth constantl of lattice trees
for v53, 4, 5, and 6.

z v53 v54 v55 v56

fcc 12 21.5 17.3 14 12
60.8 60.1 61 61

bcc 8 13.7 11.3 9 8.2
60.4 60.3 62 60.7

sc 6 9.95 7.7 7.45 5.25
60.05 60.1 60.30 60.80

trnnn 12 19.735 15.7 14 10
60.011 60.7 61 61

sqnnn 8 11.737 9.3 7.8 6.8
60.007 60.3 60.3 60.5

tr 6 8.06 6.20 5.2 4.55
60.05 60.05 60.1 60.01

TABLE III. Estimates of the ratioq(v)5l/l(v) for trees and
animals using the method of ratios of coefficients.

z q (v<5) q (v<4) q (v<3)

Trees
fcc 12 1.009 1.009 1.085

60.005 60.005 60.010
bcc 8 1.0005 1.014 1.08

60.0005 60.008 60.01
sc 6 1.0002 1.0047 1.065

60.0001 60.0003 60.004
trnnn 12 1.005 1.010 1.07

60.005 60.005 60.02
sqnnn 8 1.0003 1.0050 1.060

60.0003 60.0005 60.002
tr 6 1.0001 1.002 1.044

60.0001 60.001 60.002

Animals
bcc 8 1.0004 1.009 1.08

60.0002 60.001 60.01
sc 6 1.00015 1.005 1.06

60.00010 60.001 60.01
tr 6 1.0005 1.0007 1.075

60.0005 60.0005 60.005

TABLE IV. Estimates ofq(v)5l/l(v) for lattice trees using
ratios of coefficients.

z q (v53) q (v54) q (v55) q (v56)

fcc 12 1.085 1.37 1.80 1.94
60.010 60.05 60.15 60.06

bcc 8 1.08 1.38 1.6 1.9
60.01 60.05 60.1 60.1

sc 6 1.065 1.35 1.5 2.00
60.004 60.01 60.1 60.06

trnnn 12 1.07 1.35 1.6 1.9
60.02 60.02 60.1 60.1

sqnnn 8 1.060 1.35 1.5 1.87
60.002 60.02 60.1 60.03

tr 6 1.044 1.36 1.57 1.85
60.002 60.01 60.06 60.05
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deed, the ratios are almost independent of the lattice chosen
and also, within error bounds, independent of whether the
clusters are trees or animals.

As a means of testing our series analysis methods, espe-
cially the Baker-Hunter method, we have also studied
planted free trees~i.e., abstract trees, with no reference to
their embeddings! with the same branching restrictions as for
the lattice trees. The termplanted treerefers to trees that are
rooted at a vertex of degree one. We obtain exact results for
the numberstN of planted free trees containingN vertices
using recursion relations derived from Polya theory~see@24#
for a more detailed discussion!. The resulting recursion rela-
tions obeyed bytN are easily solved using Maple. Series
expansions fortN may be obtained to any desired order in
this way. The asymptotic behavior oftN is analogous to that
of lattice trees@see Eq.~2!#:

tN;lNN2a, ~7!

where the exponenta equals 1/2, andl depends on the
valence restriction imposed.

The free tree series were analyzed using the methods de-
scribed above for lattice trees. We used terms up tot15 in
order to make a fair comparison with the lattice tree results.
In all cases, the second moment series seems to yield the best
results, as borne out by the value ofa extracted from the
Baker-Hunter method forv<3,4,5,6 andv54. Forv55 and
6, however, the convergence of the Baker-Hunter method
and the D-Log Pade´ methods was poor. The results, how-
ever, showed marked improvement when the series were en-
larged to 30 terms.

Table V displays our results. It is seen that thel ’s shown
compare favorably with the following exact values@24#:

l~unrestricted!52.9558,

l~v<4!52.815,

l~v<3!52.4833.

III. TREES ON BETHE LATTICES

In the preceding section, we discussed the behavior of the
growth constant for rooted trees embedded in different lat-
tices in two and three dimensions. In an attempt to separate
the influence of the branching restrictions from those of the
lattice and the dimension of the space in which it is embed-
ded, we now consider trees in a Bethe lattice with the same
valence restrictions as before. A rooted Bethe lattice is an

infinite uniform Cayley tree rooted at a distinguished vertex
labeled the origin. Initially we focus on subtrees of the Bethe
lattice planted at the root of the lattice, with the first bond
specified. We refer to these as planted subtrees. In this sec-
tion we show that the generating function for planted sub-
trees of the Bethe lattice determines the generating function
for rooted subtrees of the Bethe lattice. Furthermore, the
number of rooted subtrees for the Bethe lattice of coordina-
tion numberz is an upper bound for the corresponding num-
bers of rooted trees on regular lattices, embeddable inRd,
with coordination numberz. For convenience, in the remain-
der of this section the term regular lattice will imply em-
beddable inRd.

We denote the rooted Bethe lattice with coordination
number z by T z . Define Pn(v) to be the number of
n-vertex planted subtrees ofT z wherev refers to the restric-
tion imposed on the valences of the vertices as in Sec. II.
Note that P0(v)50, P1(v)50, and P2(v)51. Define
Rn(v) to be the number ofn-vertex rooted subtrees ofT z
~rooted at the origin! wherev refers to the restriction im-
posed on the valences of the vertices. We will show that the
asymptotic behavior of eitherRn or Pn is analogous to that
of lattice trees@see Eq.~3!#:

Rn;Pn;lnn2a, ~8!

where the exponenta equals 3/2, andl depends on the
valence restriction imposed.

We first show that the numbers of planted and rooted
subtrees of the Bethe lattice with coordination numberz are
upper bounds on the corresponding numbers on a regular
lattice with the same coordination number. Given any regular
lattice with coordination numberz, just as we defined
r n(v) in Sec. II to be the number ofn-vertex rooted lattice
trees with vertex valences restricted according tov, we now
definepn(v) to be the corresponding number of planted lat-
tice trees. For each vertex of the regular lattice we can define
a singlein bond in z ways and then for each in bond of the
vertex we can define a unique ordering of the remaining
z21 out bonds. For each vertex~except the root! on the
rooted Bethe lattice there is a unique in bond, i.e., the bond
connecting that vertex to the root, and we can fix an ordering
of the remainingz21 out bonds. Since for every vertex~ex-
cept the root! in a rooted subtree of a regular lattice there is
a unique in bond~i.e., the bond of the tree connecting that
vertex to the root!, one can define an injection from the set of
rooted subtrees of a regular lattice with coordination number
z to the set of rooted subtrees ofT z using the out-bond
orderings specified above for each lattice. Hence

r n~v !<Rn~v ! ~9!

and

pn~v !<Pn~v !. ~10!

Let P(x)[P(v,z)(x)5(n50
` Pn(v)x

n be the ordinary gen-
erating function for the sequence ofPn(v)’s. LetS be the set
of possible numbers of children for a vertex under the branch
point restrictionv. We can derive a functional equation for
the generating functionP(x) by constructing a recurrence
relation for the sequence ofPn’s as follows. Start with any

TABLE V. Estimates ofl(v) andq(v)5l/l(v) for free trees.

l(v) q(v)

v<6 2.94360.004
v<5 2.9160.01 1.010060.0006
v<4 2.8160.01 1.046060.035
v<3 2.48060.005 1.18360.005
v54 2.2060.01 1.34160.001
v55 2.0060.05 1.5160.06
v56 1.8560.06 1.55560.020
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n-vertex planted subtree ofT z for n>3. First remove from
the subtree the rootv0 and its adjacent vertexv1 ~and all
bonds of the subtree incident on either of these vertices!. We
are then left withj rooted trees wherej is the number of
children ofv1 (1< j<z21,jPS) and the roots of these trees
are the children ofv1 . Now we can add a new bond and
vertex~which will become the new root! to the root of each
of these trees to obtainj planted subtrees ofT z . Let mi be
the number of vertices in thei th planted tree. Note that
( i51
k mi5n221 j . This implies the following recurrence re-

lation for Pn ,n>3:

Pn5 (
jPS, j.0

S z21
j D

3 (
$mi ,i51, . . . ,j ;S i51

j mi5n221 j %

Pm1
Pm2

•••Pmj
. ~11!

Multiplying both sides byxn, summing fromn53, . . . ,̀
and then using the fact thatP05P150, P251 leads to the
following functional equation:

P~x!5x2(
jPS

S z21
j D FP~x!

x G j . ~12!

Note that ifv<2 (S5$0,1%) then the solution of the result-
ing equation for P yields the expected result that
Pn(v)5(z21)n22 ~i.e., the number of planted self-avoiding
walks onT z). Since Eq.~12! is a polynomial equation in
P(x)/x of degreek5min$jujPS%, one could solve this to find
P(x)/x and hencePn(v) for at leastk<3. However, we are
primarily interested in the asymptotic behavior ofPn(v),
and in larger values ofk, so we take a different approach. In
particular we follow Theorem 5 of Bender@25# ~p. 502, see
also Hararyet al. @26# and Meir and Moon@27#!, replace
P(x)/x by w, and rewrite the functional equation above as

F~x,w![F(
jPS

xS z21
j Dwj G2w50. ~13!

Note that sinceP0(v)50 andP1(v)50, P(x)/x is a power
series inx, which is 0 for x50 and the radius of conver-
gence forP(x)/x is equal to the radius of convergence for
P(x). F(x,w) is a polynomial inx andw and hence it is
analytic for allx andw. The coefficients ofF(x,w)1w are
all non-negative so that Theorem 1, p. 82, of Meir and Moon
@27# guarantees that Bender’s result is valid for this problem.
Thus the growth constantl(v) can be determined by first
solving the two simultaneous equationsF(r ,s)50 and
Fw(r ,s)50 for r ands, whereFw is the partial derivative of
F with respect tow. Then, according to Bender’s result,r is
the radius of convergence ofP(x)/x and hencel(v)51/r
ands5P(r )/r . From Eq.~13! one can solve forr ands to
obtain

l~v !5
1

r
5(

jPS
j S z21

j D sj215(
jPS

S z21
j D sj21 ~14!

and wheres is the unique positive real solution of

(
jPS

~ j21!S z21
j D sj50. ~15!

Given valence restrictionv with corresponding setS, such
that 1PS, there is a corresponding homeomorphically irre-
ducible casev̄ with corresponding setS̄5S2$1%. We note
that the termj51 does not contribute to the left-hand side of
Eq. ~15! so s is the same for bothv and v̄. Hence
l(v)5l( v̄)1(z21).

The general asymptotic behavior ofPn is then as follows:

Pn11;F Fx

2plFww
G1/2n23/2ln, ~16!

whereFx andFww are evaluated at (r ,s). Using Eqs.~14!
and ~15! we get

Fx

Fww
5

s2l2

F( jPSS z21
j D j 2sj21G2l

. ~17!

Three cases can be solved fairly easily, and the results can be
summarized as follows.

1. v5k11 (S5$0,1,k%), 2<k<z21:

l5z211
k

k21 F S z21
k D ~k21!G1/k, ~18!

s5F S z21
k D ~k21!G21/k

. ~19!

Note that in this case, for fixedk,

l;~z21!F11
k

~k21!121/k S 1k! D
1/kG ~20!

asz goes to infinity. Fork52,3,4,5, the coefficient ofz21
in Eq. ~20! is 11A2'2.4142, 2.040 04, 1.792 805,
1.633 1196, respectively.

2. v<z (S5$0,1, . . . ,z21%):

l5~z21!S 11
1

z22D
z22

5
~z21!z21

~z22!z22 , ~21!

s5
1

z22
. ~22!

The result in Eq.~21! agrees with the result of Fisher and
Essam@28# and with the fact that in this case one can solve
explicitly for Pn(v) to obtain

Pn~v !5S ~z21!~n21!

n21 D 1

~z22!~n21!11
~23!

@see Penrose @29#, Eq. ~4! and note that
Pn(v)5bn22(z21)#.
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3. v<4 (S5$0,1,2,3%):

l5~z21!S 11
122/~z21!

A
1
1

2

121/~z21!

~122/~z21!!
A

1
1

6

121/~z21!

122/~z21!
A2D , ~24!

where

A[
B

@121/~z21!#1/3
1
1

4

@121/~z21!#1/3

B
2
1

2
~25!

and

B[F118 2
47

8~z21!
1

6

~z21!2

1S 12
2

z21DA15

8
2

69

8~z21!
1

9

~z21!2
G1/3. ~26!

In this case

l;~z21!S 11
1

b
1
1

2
b1

1

6
b2D'2.660 324 085~z21!

~27!

asz goes to infinity, where

b5
122~11/81A15/8!1/314~11/81A15/8!2/3

4~11/81A15/8!1/3

'1.078 616 89. ~28!

Other cases can be solved numerically. Tables VI and VII
show the results forl for the cases corresponding to Tables
I and II from Sec. II. Tables VIII and IX show the results for
l/l(v) for the cases corresponding to Tables III and IV
from Sec. II.

Equations~20! and ~27! show that, for these two cases,
l(v) is asymptotically a linear function ofz21. This result
can be generalized as follows. Equation~15! can be rewritten
as

(
jPS2$0%

~ j21!S z21
j D sj51. ~29!

Let p5uSu. Assumingp>3 and $0,1%,S, the number of
nonzero terms on the left-hand side of Eq.~29! is p22,
therefore there existsmPS2$0,1% such that

~m21!S z21
m D sm>

1

p22
. ~30!

With one suchm fixed, from Eq.~30! and the equation

S z21
j D5

~z21! j

j ! )
i51

j21 S 12
i

z21D ~31!

we obtain

s>
~m! !1/m

~z21!~p22!1/m~m21!1/m$P i51
m21@12 i /~z21!#%1/m

[
Bz

z21
. ~32!

Similarly each term on the left-hand side of Eq.~29! must be
less than one. Hence

~m21!S z21
m D sm,1 ~33!

and so

s<
~m! !1/m

~z21!~m21!1/m$P i51
m21@12 i /~z21!#%1/m

[
Az

z21
.

~34!

Using the bounds in Eqs.~32! and ~34! in Eq. ~14! we
obtain

(
jPS

j S z21
j D F Bz

~z21!G
j21

<l~v !<(
jPS

j S z21
j D F Az

~z21!G
j21

.

~35!

Using equation~31!, equation~35! becomes

~z21!(
jPS

jBz
j21

j ! )
i51

j21 S 12
i

z21D
<l~v !<~z21!(

jPS

jAz
j21

j ! )
i51

j21 S 12
i

z21D . ~36!

Note that limz→`Az5A, a constant, and limz→`Bz5B5
A/(p22)1/m, a constant. Therefore, there exists constants
c1 andc2 , which depend onS, such that

c1< lim inf
z→`

l~v !
z21

< lim sup
z→`

l~v !
z21

<c2 . ~37!

TABLE VI. The growth constantl(v) for trees on the Bethe lattice forv<z, 6, 5, 4, and 3.

z v<z v<6 v<5 v<4 v<3

12 28.531 167 06 28.526 187 70 28.479 122 19 28.117 664 01 25.832 396 97
8 17.651 384 60 17.650 462 25 17.634 097 02 17.460 761 28 16.165 151 39
6 12.207 031 25 12.207 031 25 12.203 112 42 12.121 540 58 11.324 555 32
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In the case S5$0,1,k%, p53, m5k, and c15c2 so
limz→`l(v)/(z21)5c1 and this is equivalent to the result
in Eq. ~20!.

The above analysis was for planted trees. We now wish
to relate these results to the corresponding results for
rooted trees. LetR(x)5(n50

` Rn(v)x
n be the ordinary

generating function forRn(v). Let S be the set of possible
numbers of children for a vertex~other than the root! under
the branch point restrictionv. Note that 0PS. We can de-
rive a functional equation for the generating functionR(x)
by constructing a recurrence relation for the sequence of
Rn’s in terms of the Pn’s as follows. Start with any
n-vertex rooted subtree ofT z for n>2. First remove the root
vertex v0 ~and any edges incident on it!. We are then left
with j rooted trees wherej is the number of children ofv0
(1< j<z, j21PS) and the roots of the trees are the chil-
dren ofv0 . Now we can add a new bond and vertex~which
will become the new root! to the root of each of these trees to
obtain j planted subtrees ofT z . Let mi be the number of
vertices in the i th planted subtree. Note that
( i51
k mi5n211 j . This implies the following recurrence re-

lation for Rn ,n>2:

Rn5 (
j21PS, j.0

S zj D
3 (

$mi ,i51, . . . ,j ;S i51
j mi5n211 j %

Pm1
Pm2

•••Pmj
. ~38!

Multiplying both sides byxn, summing fromn52, . . . ,̀
and then using the fact thatP05P150, P251 andR050,
R151 leads to the following functional equation:

R~x!5x1x(
jPS

S z
j11D FP~x!

x G j11

, ~39!

which can be rewritten as

R~x!5x1x(
jPS

z

j11 S z21
j D FP~x!

x G j11

. ~40!

By the definition ofRn and Pn it is clear thatPn<Rn21 .
From this and Eq.~40! we obtain

P~x!

x
<R~x!<x1zFP~x!

x G2. ~41!

Since P(x)/x has the same radius of convergence as
P(x), the bounds in Eq.~41! imply that the radius of
convergence forR(x) is equal to the radius of convergence
for P(x). Hence the growth constantl is the same for
bothPn andRn . We also know~from Bender’s Theorem 5!
that

P~x!

x
5A~x!~12lx!1/21B~x!, ~42!

where A(x) and B(x) are analytic in a disk with radius
greater than 1/l. Using Eqs.~42! and ~39! yields

R~x!5x1x(
jPS

S z
j11D @A~x!~12lx!1/21B~x!# j115x1x(

jPS
S z
j11D F (l50

j11 S j11
l DA~x! l~12lx! l /2B~x! j112 l G

5x1x(
l50

k11

~12lx! l /2A~x! l (
jPS, j> l21

S z
j11D S j11

l DB~x! j112 l

5x1x (
l50

b k11
2 c

~12lx! lA~x!2l (
jPS, j>2l21

S z
j11D S j11

2l DB~x! j1122l1~12lx!1/2x(
l50

b k2 c

~12lx! lA~x!2l11

3 (
jPS, j>2l

S z
j11D S j11

2l11DB~x! j22l . ~43!

TABLE VII. The growth constantl(v) for trees on the Bethe lattice forv53, 4, 5, 6, andz.

z v53 v54 v55 v56 v5z

12 25.832 396 97 21.365 634 85 18.479 068 92 16.626 656 55 12.356 131 41
8 16.165 151 39 13.181 927 95 11.268 114 50 10.032 256 04 8.5069 930 66
6 11.324 555 32 9.0716 264 26 7.6239 862 27 6.6493 848 89 6.6493 848 89
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Since the l50, j50 term in the final sum is nonzero,
R(x)5B̂(x)1(12lx)1/2Â(x), where Â(x) and B̂(x) are
analytic in a disk with radius larger than 1/l. This implies by
Darboux’s theorem thatRn /l

n5O(n23/2) as claimed in
Eq. ~8!.

IV. CONCLUSION

In this paper we have investigated the way in which the
growth constants of animals and trees in various lattices de-
pend on~a! the coordination number of the lattice and~b!
valence restrictions imposed on the tree or animal. Our re-
sults describe the specifics of how the growth constant in-
creases as the coordination number increases, increases as
the maximum valence restriction is relaxed, and decreases as
k increases for the special case of allowed branch vertex
valencek only. Roughly speaking, the growth constants in-
crease more or less linearly with coordination number,
though we do not expect this increase to be strictly linear.

For the Bethe lattice with coordination numberz we have
proved that the growth constant is bounded above and below
by linear functions ofz for large z, which is presumably
related to the quasilinear behavior observed for the regular
lattices. We have used Eqs.~15! and ~14! to calculate nu-
merical values ofl(v) for integer values ofz up to 100. It is
not difficult to prove that l(v<2),l(v5z21)
,l(v5z22),•••,l(v53) and the nonstrict inequal-
ities l(v53)5l(v<3)<l(v<4)<•••<l(v<z21).

We observe, from the numerical data, thatl(v<2)
, l(v5z21), l(v5z22) , ••• , l(v53)5l(v< 3)
,l~v<4!,•••,l~v<z21!. In addition, for fixedv, l(v) is
essentially indistinguishable from a linear function ofz21
even for small values ofz.

A remarkable feature of our results is that the ratio
l/l(v) is almost independent of the lattice considered. In-
deed for the cases wherev53, 4, or 5~Tables IV and IX!,
the variation is comparable with the error estimates for the
series analysis and the Bethe lattice values of these ratios are
very close to those found for the two- and three-dimensional
lattices. Understanding why these ratios are almost lattice
independent may provide insight into how valence restric-
tions affect the generation of new topologies as the molecu-
lar weight of a given branched polymer is increased.

We have proved that the results on the Bethe lattice are
upper bounds for the corresponding results on regular lattices
and we expect that, as the dimension of the regular lattices
goes to infinity, the Bethe lattice upper bound will become
sharper. In light of these results it would be interesting to
obtain data for valence restricted trees in higher dimensions,
and to construct a 1/d expansion about the Bethe lattice re-
sults.
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